Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 57(50): 21337-21347, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38059579

ABSTRACT

Impacts of an environmental matrix on mercury (Hg) bioavailability and toxicity to medaka (Oryzias latipes) were investigated in matrix-free controls and treatments with a stepwise increased environmental matrix of river water, sediments, and biofilms. Generally, river water enhanced but the presence of sediments and biofilms reduced Hg bioavailability to medaka up to 105 times, so that Hgtotal concentrations/amounts among different environmental media cannot mirror Hg availability and toxicity to medaka. On average, 12.9 and 12.4% of Hg in medaka was, respectively, methylated to methylmercury (MeHg) in matrix-free and -containing treatments, indicating no influence of the environmental matrix on Hg methylation in medaka. All oxidative stress, inflammatory injury, and malformation parameters correlated strongly and significantly with Hgtotal and MeHg concentrations in medaka, notably with steeper slopes in matrix-free controls than in matrix-containing treatments, highlighting that the environmental matrix mitigated Hg and MeHg toxicity to medaka. Moreover, oxidative stress was more strongly mitigated than inflammatory injury according to the stronger decreases of the regression line slopes from matrix-free to -containing treatments. Here, we have newly identified that the potential of the environmental matrix to decrease Hg bioavailability and mitigate Hg toxicity to fish together could buffer Hg ecotoxicity in the aquatic environment.


Subject(s)
Mercury , Methylmercury Compounds , Oryzias , Water Pollutants, Chemical , Animals , Rivers , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Environmental Monitoring , Mercury/toxicity , Mercury/analysis , Methylmercury Compounds/toxicity , Water , Geologic Sediments
2.
Environ Sci Technol ; 57(42): 15892-15903, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37788478

ABSTRACT

To understand the role of vegetation and soil in regulating atmospheric Hg0, exchange fluxes and isotope signatures of Hg were characterized using a dynamic flux bag/chamber at the atmosphere-foliage/soil interfaces at the Davos-Seehornwald forest, Switzerland. The foliage was a net Hg0 sink and took up preferentially the light Hg isotopes, consequently resulting in large shifts (-3.27‰) in δ202Hg values. The soil served mostly as net sources of atmospheric Hg0 with higher Hg0 emission from the moss-covered soils than from bare soils. The negative shift of δ202Hg and Δ199Hg values of the efflux air relative to ambient air and the Δ199Hg/Δ201Hg ratio among ambient air, efflux air, and soil pore gas highlight that Hg0 re-emission was strongly constrained by soil pore gas evasion together with microbial reduction. The isotopic mass balance model indicates 8.4 times higher Hg0 emission caused by pore gas evasion than surface soil photoreduction. Deposition of atmospheric Hg0 to soil was noticeably 3.2 times higher than that to foliage, reflecting the high significance of the soil to influence atmospheric Hg0 isotope signatures. This study improves our understanding of Hg atmosphere-foliage/soil exchange in subalpine coniferous forests, which is indispensable in the model assessment of forest Hg biogeochemical cycling.


Subject(s)
Mercury , Mercury/analysis , Soil/chemistry , Switzerland , Forests , Atmosphere/chemistry , Isotopes , Environmental Monitoring/methods , Mercury Isotopes/analysis
3.
Environ Pollut ; 337: 122526, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37683757

ABSTRACT

Selenium (Se) elevates the antioxidant ability of rice against cadmium (Cd) stress, but previous studies only focused on the variation in antioxidant enzymes or nonenzymatic substances induced by Se under Cd stress and ignored the relationships between different antioxidant parameters during the interaction. Here, hydroponic experiments with rice were performed by adding both Cd and Se at doses in the range of 0-50 µM to explore the physiological responses of rice and their relationships in the presence of different levels of Se and Cd. Exogenous Cd markedly promoted the activity of antioxidant enzymes with the exception of catalase (CAT) and the concentration of nonenzymatic substances in aerial parts. Se enhanced the antioxidant capacity by improving the activities of all the enzymes tested in this study and increasing the concentrations of nonenzymatic compounds. The couplings among different antioxidant substances within paddy rice were then determined based on cluster and linear fitting results and their metabolic process and physiological functions. The findings specifically highlight that couplings among the ascorbic acid (AsA)-glutathione (GSH) cycle, glutathione synthase (GS)-phytochelatin synthetase (PCS) coupling system and glutathione peroxidase (GPX)-superoxide dismutase (SOD) coupling system in aerial parts helps protect plants from Cd stress. These coupling systems form likely due to the fact that one enzyme generated a product that could be the substrate for another enzyme. Noticeably, such coupling systems do not emerge in roots because the stronger damage to roots than other organs activates the ascorbate peroxidase (APX)-GPX-CAT and PCS-GS-SOD systems with distinct functions and structures. This study provides new insights into the detoxification mechanisms of rice caused by the combined effect of Se and Cd.


Subject(s)
Oryza , Selenium , Antioxidants/metabolism , Selenium/pharmacology , Selenium/metabolism , Cadmium/metabolism , Oryza/metabolism , Oxidative Stress , Glutathione/metabolism , Catalase/metabolism , Superoxide Dismutase/metabolism , Phytochelatins/metabolism , Glutathione Peroxidase/metabolism
4.
Environ Res ; 229: 116005, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37116676

ABSTRACT

Litterfall, typically referring to needles/leaves, may stand for >50% of the total mercury (Hg) deposition in forest ecosystems. By detailed categorisation, we reveal for the first time that the contributions through lichens and fine litter, together 9.98 µg Hg m-2 yr-1, could be as high as that in needle litter (9.96 µg m-2 yr-1) to the annual total Hg deposition (44.6 µg m-2 yr-1) in a subalpine forest in Switzerland. Noticeably, needle litter had the highest contribution (53%) to total Hg in the autumn litterfall but lichens and fine litter together predominated in other seasons (47-59%). Such a seasonal pattern is caused by the high ability of lichens and fine litter to accumulate Hg and the high needle litterfall in autumn, which is related to a good rainfall in summer followed by a dry period in autumn. The constantly higher Hg levels in lichens and fine litter than in needle litter together with similar seasonal patterns of litterfall during 2009-2019 and rainfall during 1980-2019 suggest that our finding can be generally valid. Here, we highlight not only the considerable role of non-needle litterfall in Hg deposition but also the association with weather for seasonal Hg dynamics in different litterfall components.


Subject(s)
Lichens , Mercury , Mercury/analysis , Ecosystem , Trees , Environmental Monitoring , Forests
5.
Environ Pollut ; 307: 119483, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35595001

ABSTRACT

Taking advantage of the different histories of Hg deposition in Davos Seehornwald in E-Switzerland and Changbai Mountain in NE-China, the influence of atmospheric deposition on Hg soil dynamics in forest soil profiles was investigated. Today, Hg fluxes in bulk precipitation were similar, and soil profiles were generally sinks for atmospherically deposited Hg at both sites. Noticeably, a net release of 2.07 µg Hg m-2 yr-1 from the Bs horizon (Podzol) in Seehornwald was highlighted, where Hg concentration (up to 73.9 µg kg-1) and soil storage (100 mg m-3) peaked. Sequential extraction revealed that organic matter and crystalline Fe and Al hydr (oxide)-associated Hg decreased in the E horizon but increased in the Bs horizon as compared to the Ah horizon, demonstrating the coupling of Hg dynamics with the podzolisation process and accumulation of legacy Hg deposited last century in the Bs horizon. The mor humus in Seehornwald allowed Hg enrichment in the forest floor (182-269 µg kg-1). In Changbai Mountain, the Hg concentrations in the Cambisol surface layer with mull humus were markedly lower (<148 µg kg-1), but with much higher Hg soil storage (54-120 mg m-3) than in the Seehornwald forest floor (18-27 mg m-3). Thus, the vertical distribution pattern of Hg was influenced by humus form and soil type. The concentrations of Hg in soil porewater in Seehornwald (3.4-101 ng L-1) and in runoff of Changbai Mountain (1.26-5.62 ng L-1) were all low. Moreover, the pools of readily extractable Hg in the soils at both sites were all <2% of total Hg. Therefore, the potential of Hg release from the forest soil profile to the adjacent aquatic environment is currently low at both sites.


Subject(s)
Mercury , Soil Pollutants , China , Environmental Monitoring , Forests , Mercury/analysis , Soil/chemistry , Soil Pollutants/analysis , Switzerland , Taiga , Trees
6.
Environ Pollut ; 263(Pt B): 114323, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32311621

ABSTRACT

Despite the mercury (Hg) control measures adopted by the international community, Hg still poses a significant risk to ecosystem and human health. This is primarily due to the ability of atmospheric Hg to travel intercontinentally and contaminating terrestrial and aquatic environments far from its natural and anthropogenic point sources. The issue of Hg pollution is further complicated by its unique physicochemical characteristics, most noticeably its multiple chemical forms that vary in their toxicity and environmental mobility. This meant that most of the risk evaluation protocols developed for other metal(loid)s are not suitable for Hg. Soil is a major reservoir of Hg and a key player in its global cycle. To fully assess the risks of soil Hg it is essential to estimate its bioavailability and/or availability which are closely linked to its toxicity. However, the accurate determination of the (bio)-available pools of Hg in soils is problematic, because the terms 'bioavailable' and 'available' are ill-defined. In particular, the term 'bioavailable pool', representing the fraction of Hg that is accessible to living organisms, has been consistently misused by interchanging with other intrinsically different terms e.g. mobile, labile, reactive and soluble pools. A wide array of physical, chemical, biological and isotopic exchange methods were developed to estimate the (bio)-available pools of Hg in soil in an attempt to offer a plausible assessment of its risks. Unfortunately, many of these methods do not mirror the (bio)-available pools of soil Hg and suffer from technical drawbacks. In this review, we discuss advantages and disadvantages of methods that are currently applied to quantify the (bio)-availability of Hg in soils. We recommended the most feasible methods and give suggestions how to improve the determination of (bio)-available Hg in soils.


Subject(s)
Mercury/analysis , Soil Pollutants/analysis , Biological Availability , Ecosystem , Environmental Monitoring , Humans , Soil
7.
Chimia (Aarau) ; 74(1): 58, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32265000
8.
Environ Int ; 130: 104891, 2019 09.
Article in English | MEDLINE | ID: mdl-31234005

ABSTRACT

Fungi are well known to strongly interact with metals, thereby influencing metal biogeochemistry in the terrestrial environment. To assess and quantify potential fungi-vanadium (V) interactions, Amanita muscaria, Armillaria cepistipes, Xerocomus badius and Bjerkandera adusta were cultured in media containing soluble V (VOSO4 or NaVO3) or solid-phase V of different chemical forms and oxidation state (V2O3, VO2, V2O5, or V-Ti magnetite slag). All fungi underwent physiological and structural changes, as revealed by alterations in FT-IR peak positions and intensities relative to the control, and morphological changes of mycelia, as observed by scanning electron microscopy. The diametric growth size generally decreased with decreasing oxidation state of V and with increasing concentrations of VOSO4 and NaVO3, implying that V toxicity is dependent on V speciation. The tolerance index, the ratio of treated and control mycelium (dry weight), shows different tendencies, suggesting additional factors influencing fungi weight, such as the formation of extrahyphal crystals. Vanadium accumulation from VOSO4 and NaVO3 medium in all fungi (up to 51.3 mg g-1) shows the potential of fungi to immobilise soluble V, thereby reducing its impacts on environmental and human health. Uptake and accumulation of V in slag was insignificant, reflecting the association of slag V with insoluble crystalline materials. The fungal accumulation of V in medium amended with V-oxides demonstrates the ability of fungi to solubilise solid-phase V compounds, thereby introducing previously immobile V into the V biogeochemical cycle and into the food chain where it may impact ecological and human health. A.muscaria lowered the pH of the medium substantially during cultivation, indicating acidolysis and complexolysis via excretion of organic acids (e.g. oxalic acid). Oxidation of VOSO4 was observed by a colour change of the medium to yellow during B. adusta cultivation, revealing the role of fungally-mediated redox transformation in V (im)mobilisation. The calculated removal efficiencies of soluble V were 40-90% for A. cepistipes and X. badius, but a much lower recovery (0-20%) was observed from V oxides and slag (0-20%) by all fungi. This suggests the probable application of fungi for bio-remediation of mobile/soluble V in contaminated soils but not of V incorporated in the lattice of soil minerals.


Subject(s)
Basidiomycota , Biodegradation, Environmental , Soil Pollutants , Vanadium , Basidiomycota/chemistry , Basidiomycota/drug effects , Basidiomycota/metabolism , Minerals , Oxidation-Reduction , Soil Pollutants/isolation & purification , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Vanadium/isolation & purification , Vanadium/metabolism , Vanadium/toxicity , Vanadium Compounds/isolation & purification , Vanadium Compounds/metabolism , Vanadium Compounds/toxicity
9.
Environ Pollut ; 250: 944-952, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31085481

ABSTRACT

The Minamata Convention entered into force in 2017 with the aim to phase-out the use of mercury (Hg) in manufacturing processes such as the chlor-alkali or vinyl chloride monomer production. However, past industrial use of Hg had already resulted in extensive soil pollution, which poses a potential environmental threat. We investigated the emission of gaseous elemental mercury (Hg0) from Hg polluted soils in settlement areas in the canton of Valais, Switzerland, and its impact on local air Hg concentrations. Most soil Hg was found as soil matrix-bound divalent Hg (HgII). Elemental mercury (Hg0) was undetectable in soils, yet we observed substantial Hg0 emission (20-1392 ng m-2 h-1) from 27 soil plots contaminated with Hg (0.2-390 mg Hg kg-1). The emissions of Hg0 were calculated for 1274 parcels covering an area of 8.6 km2 of which 12% exceeded the Swiss soil remediation threshold of 2 mg Hg kg-1. The annual Hg0 emission from this area was approximately 6 kg a-1, which is almost 1% of the total atmospheric Hg emissions in Switzerland based on emission inventory estimates. Our results show a higher abundance of Hg resistance genes (merA) in soil microbial communities with increasing soil Hg concentrations, indicating that biotic reduction of HgII is likely an important pathway to form volatile Hg0 in these soils. The total soil Hg pool in the top 20 cm of the investigated area was 4288 kg; hence, if not remediated, these contaminated soils remain a long-term source of atmospheric Hg, which is prone to long-range atmospheric transport.


Subject(s)
Bacteria/drug effects , Bacteria/genetics , Environmental Monitoring/methods , Mercury/analysis , Mercury/toxicity , Oxidoreductases/genetics , Soil Pollutants/analysis , Soil/chemistry , Drug Resistance, Bacterial/genetics , Environmental Pollution/analysis , Industry , Meteorological Concepts , Switzerland
10.
Chemosphere ; 221: 193-202, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30639815

ABSTRACT

Understanding the sorption kinetics of Hg2+ is the key to predicting its reactivity in soils which is indispensable for environmental risk assessment. The temporal change in the solubility of 196Hg2+ spikes (6 mg kg-1) added to a range of soils with different properties was investigated and modelled. The sorption of 196Hg2+ displayed a biphasic pattern with a rapid initial (short-term) phase followed by a slower (time-dependent) one. The overall reaction rate constants ranged from 0.003 to 4.9 h-1 and were significantly correlated (r = 0.94) to soil organic carbon (SOC). Elovich and Spherical Diffusion expressions compellingly fitted the observed 196Hg2+ sorption kinetics highlighting their flexibility to describe reactions occurring over multiple phases and wide timeframes. A parameterized Elovich model from soil variables indicated that the short-term sorption is solely controlled by SOC while the time-dependent sorption appeared independent of SOC and decreased at higher pH values and Al(OH)3 and MnO2 concentrations. This is consistent with a rapid chemical reaction of Hg2+ with soil organic matter (SOM) which is followed by a noticeably slower phase likely occurring through physical pathways e.g. pore diffusion of Hg2+ into spherical soil aggregates and progressive incorporation of soluble organic-Hg into solid phase. The model lines predicted that in soils with >4% SOC, Hg2+ is removed from soil solution over seconds to minutes; however, in soils with <2% SOC and higher pH values, Hg2+ may remain soluble for months and beyond with a considerable associated risk of re-emission or migration to the surrounding environments.


Subject(s)
Mercury/analysis , Soil Pollutants/analysis , Soil/chemistry , Adsorption , Carbon , Diffusion , Hydrogen-Ion Concentration , Isotopes , Kinetics , Solubility
11.
Sci Total Environ ; 636: 282-298, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29709848

ABSTRACT

Copper (Cu) distribution in soil is influenced by climatic, geological and pedological factors. Apart from geological sources and industrial pollution, other anthropogenic sources, related to the agricultural activity, may increase copper levels in soils, especially in permanent crops such as olive groves and vineyards. This study uses 21,682 soil samples from the LUCAS topsoil survey to investigate copper distribution in the soils of 25 European Union (EU) Member States. Generalized Linear Models (GLM) were used to investigate the factors driving copper distribution in EU soils. Regression analysis shows the importance of topsoil properties, land cover and climate in estimating Cu concentration. Meanwhile, a copper regression model confirms our hypothesis that different agricultural management practices have a relevant influence on Cu concentration. Besides the traditional use of copper as a fungicide for treatments in several permanent crops, the combined effect of soil properties such as high pH, soil organic carbon and clay, with humid and wet climatic conditions favours copper accumulation in soils of vineyards and tree crops. Compared to the overall average Cu concentration of 16.85 mg kg-1, vineyards have the highest mean soil Cu concentration (49.26 mg kg-1) of all land use categories, followed by olive groves and orchards. Gaussian Process Regression (GPR) combined with kriging were used to map copper concentration in topsoils and to evidence the presence of outliers. GPR proved to be performant in predicting Cu concentration, especially in combination with kriging, accounting for 66% of Cu deviance. The derived maps are novel as they include information about the importance of topsoil properties in the copper mapping process, thus improving its accuracy. Both models highlight the influence of land management practices in copper concentration and the strong correlation between topsoil copper and vineyards.

12.
Sci Total Environ ; 615: 1470-1477, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-28927810

ABSTRACT

To quantify arsenic (As) volatilisation by peatlands and to elucidate the environmental factors governing As volatilisation, a series of anoxic incubations with acidic fen soil collected in northeast Bavaria in Germany were performed at 15°C for 4months. Arsenic volatilisation summed to 2.32ng As in the control, which was 1.6% and ~0.01% of the porewater As and the total As storage in the fen soil, respectively. Treatment with 10mM NaN3 resulted in only 0.03ng As volatilisation. In comparison, addition of 10mM NaOAc stimulated microbial activity in fen soil and As volatilisation rose to 8.42ng As, indicating that As volatilisation by fen soil is primarily biogenic. Spiking with 67µM As(III) increased As volatilisation eightfold, supposedly caused by the largely enhanced As availability in porewater for microbes (~10 times higher than the control). Adding 10mM FeCl3 and Na2SO4 decreased As volatilisation to 0.30 and 0.82ng As, respectively, apparently due to the change of microbial activity. Speciation of gaseous As in the headspace using GC-ICP-MS/EI-MS showed the predominance of arsine and trimethylarsine in treatments with low and high porewater As concentrations, respectively, suggesting different formation pathways of arsine and methylarsines. This study demonstrated the strong linkage between microorganisms and As volatilisation by peatlands and furthermore indicated the minor role of As volatilisation in the natural As biogeochemical cycle in the semi-terrestrial environment.

13.
Chemosphere ; 194: 49-56, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29197249

ABSTRACT

A series of model anoxic incubations were performed to understand the concurrence between arsenate and ferrihydrite reduction by Shewanella putrefaciens strain CN-32 at different concentrations of arsenate, ferrihydrite and lactate, and with given ΔGrxn for arsenate and ferrihydrite reduction in non-growth conditions. The reduction kinetics of arsenate sorbed to ferrihydrite is predominately controlled by the availability of dissolved arsenate, which is measured by the integral of dissolved arsenate concentrations against incubation time and shown to correlate with the first order rate constants. High lactate concentrations slightly slowed down the rate of arsenate reduction due to the competition with arsenate for microbial contact. Under all experimental conditions, simultaneous arsenate and ferrihydrite reduction occurred following addition of S. putrefaciens inoculums and suggested no apparent competition between these two enzymatic reductions. Ferrous ions released from iron reduction might retard microbial arsenate reduction at high arsenate and ferrihydrite concentrations due to formation of ferrous arsenate. At high arsenate to ferrihydrite ratios, reductive dissolution of ferrihydrite shifted arsenate from sorption to dissolution and hence accelerated arsenate reduction. The interaction between microbial arsenate and ferrihydrite reduction did not correlate with ΔGrxn, but instead was governed by other factors such as geochemical and microbial parameters.


Subject(s)
Arsenates , Ferric Compounds/chemistry , Iron/chemistry , Kinetics , Arsenates/analysis , Arsenates/chemistry , Arsenates/metabolism , Oxidation-Reduction , Shewanella putrefaciens/metabolism , Solubility
14.
Sci Rep ; 7(1): 2981, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28592848

ABSTRACT

For the first time, speciation of Fe, Mn, Zn, Ni, Cu and Pb was determined along the profiles of 8 constructed wetlands (CWs) consisting of fluviatile sand (Fluv), clinopyroxene-dominated lava sand (Cl-LS) and zeolite-dominated lava sand (Ze-LS), aiming at quantifying metal behaviour in CWs and the impact caused by different filter materials. With the exception of Mn, which underwent reductive dissolution, CWs were sinks for the studied metals. Metal accumulation rates differed in the following order: Ze-LS ≥ Cl-LS > Fluv CWs, reflecting the highest metal adsorption capacity and the lowest hydraulic conductivity of Ze-LS. Sequential extraction data indicated the highest metal mobility (readily mobilised and adsorbed fractions summing up to ~60%) in Fluv CWs, implying a higher risk of metal release into adjacent environments if Fluv from CWs will be improperly disposed after usage. Zinc and Ni were transported into the deeper CW layers to a larger extent than Cu and Pb, reflecting adsorption affinity to all filter materials in the order of Pb > Cu > Zn > Ni. Therefore, understanding metal speciation and mobility in such materials is crucial when they are considered for application as filters in CWs.

15.
J Environ Sci (China) ; 53: 173-183, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28372742

ABSTRACT

Reviewing the current state of knowledge about sequential extraction applied for soil vanadium (V) fractionation, we identified an urgent requirement of an sequential extraction (SE) specified for V. Namely, almost all previous SE extracted only 8.4%-48% of total V in soils (excluding residue). Thus, we proposed an eight-step SE for V fractionation in soils according to the knowledge gained from literature and our own dissolution experiments with model minerals. After extracting the mobilisable and adsorbed V with de-ionised water and 5mmol/L phosphate, 1mol/L pyrophosphate was applied to gather organic matter bound V which minimised the artefact dissolving Al and Fe (hydr)oxides occurred when using HNO3-H2O2 for extraction. Extraction with 0.4mol/L NH2OH⋅HCl was highly selective toward manganese oxides. Fractionation of different crystalline Al and Fe (hydr)oxides associated V with 1mol/L HCl, 0.2mol/L oxalate buffer and 4mol/L HCl at 95°C especially improved the extractability of V incorporated with crystalline phase associated V. The suitability of our new SE scheme was confirmed by its higher selectivity against the target phases and higher extraction efficiencies (55%-77% of total V) with model minerals and 6 soils of different properties than previous SE.


Subject(s)
Environmental Monitoring/methods , Soil Pollutants/analysis , Soil/chemistry , Vanadium/analysis , Adsorption , Agriculture , Chemical Fractionation , Minerals
16.
Environ Monit Assess ; 189(1): 16, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27975331

ABSTRACT

Phosphorus (P) fractionations in the surface sediment of Sancha Lake in China's southwestern Sichuan Province were examined to assess the potential P release at the water-sediment interface and to understand its seasonal (2009-2010) and historical dynamics (1989-2010) in the surface water. Elevated P concentrations were detected in the sediment at main reservoir inflow, south canal of the Dujiangyan irrigation network, and intensive cage fish farming area, accounting for 32 and 40% of current total P discharges. The highest total P concentration (11,200 µg P g-1) was observed in the upper sediment below intensive fish farming area with a specific enrichment of HCl-P (51% of total P) mainly from fish feeds and feces. These sediments had larger MgCl2-P pools with higher diffusive P fluxes (0.43-0.47 mg m-2 d-1) from surface sediment than those from other areas (0.25-0.42 mg m-2 d-1). The general small proportion of MgCl2-P (5.7-10%) and low diffusive P fluxes from surface sediment (<0.02% of sediment P storage (0-1 cm)) indicate low mobility and slow release of P from sediments. The sediment as an internal P source led to a 3-4-year lag for P concentration decrease in the surface water after restriction of anthropogenic P discharges since 2005. Thus, the peak P concentration in April and September could be explained as a combined effect of supplementing internal loading via reductive processes in sediments and seasonal water vertical circulation in the early spring and fall. Policy played a crucial role in reducing P inputs to the lake.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/analysis , Phosphorus/analysis , Animals , China , Fishes , Lakes , Seasons , Water , Water Pollutants, Chemical/analysis
17.
Sci Rep ; 5: 16617, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26577441

ABSTRACT

Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation.


Subject(s)
Agriculture , Fishes , Geologic Sediments/chemistry , Phosphorus , Animals , China , Lakes
18.
Environ Sci Pollut Res Int ; 22(12): 9215-23, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25586612

ABSTRACT

The response of rape (Brassica juncea L.) to different vanadium (V) speciation in rhizosphere soils was investigated in pot experiments using an agricultural soil containing 147 mg V kg(-1) supplemented with 0-500 mg V kg(-1) of pentavalent V [V(V)] and a mining soil containing 774 mg V kg(-1). Tetravalent V [V(IV)] accounted for 76.1 and 85.9 % of total V in the untreated agricultural soil and mining soil, respectively. The proportion of both V(V) and water-extractable V increased with increasing concentrations of V(V) in the agricultural soil. The growth of rape substantially reduced the concentrations of V(V) but not V(IV) in the rhizosphere soil, suggesting that V(V) was actively involved in the soil-rape interaction of V. Both soil V(V) and water-extractable V were negatively related to the total rape biomass, but were positively correlated with the concentration of root V. No such relationships were found for total V and soil V(IV). Together, these results indicate that soil V(V) and water-extractable V might better reflect the toxicity of V in soils than total V and soil V(IV). Rape accumulated V in the sequence: roots > > stem > leaf > seed. As indicated by the remarkably low root bioconcentration factor of V(V) (0.41-7.24 %), rape had a lower ability to accumulate V than other plants reported in the literature (14.6-298 %). Only a small fraction of V in rape roots was translocated to the aboveground organs (the translocation factor was 3.57-46.9 %). No V was detectable in seeds in the soils at 147 and 197 mg V kg(-1), and no seed was produced in the soils at higher V concentrations. Thus, the risk of V intake by humans via the consumption of rapeseed-based foods under normal conditions is considered to be lower than that of other plants.


Subject(s)
Mustard Plant/metabolism , Soil Pollutants/metabolism , Soil/chemistry , Vanadium/chemistry , Vanadium/metabolism , Biological Availability , China , Oxidation-Reduction , Plant Leaves/metabolism , Plant Roots/metabolism , Plant Stems/metabolism , Rhizosphere , Soil Pollutants/chemistry , Spectrophotometry, Atomic
19.
Chemosphere ; 111: 89-95, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24997904

ABSTRACT

This study highlights the accumulation and speciation of vanadium in Chinese cabbage (Brassica rapa L.) in relation to the speciation of soil vanadium with pot experiments at 122-622mgVkg(-1) by spiking NH4VO3. Cabbage planting decreased the bioavailable and residual vanadium based on sequential extraction, leading to enrichment of oxalate-extractable vanadium in soils. The biomass production increased with increasing concentrations of soil vanadium from 122 to 372mgVkg(-1), probably due to the increasing nitrogen availability and low vanadium availability in our soils with a consequent low vanadium toxicity. Although the concentrations of root vanadium (14.4-24.9mgVkg(-1)) related positively with soil vanadium, the bio-dilution alleviated the increase of leaf vanadium (2.1-2.7mgVkg(-1)). The predominance of vanadium(IV) in leaves (∼60-80% of total vanadium) indicates bio-reduction of vanadium in Chinese cabbage, since the mobile vanadium in oxic soils was usually pentavalent. Approximately 15-20% of the leaf vanadium was associated with recalcitrant leaf tissues. The majority of leaf vanadium was water and ethanol extractable, which is considered mobile and may cause more toxic effects on Chinese cabbage.


Subject(s)
Brassica/chemistry , Soil/chemistry , Vanadium/analysis , Vanadium/chemistry , Biomass , Brassica/growth & development , Brassica/metabolism , Ions/chemistry , Liquid-Liquid Extraction , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Roots/chemistry , Plant Roots/metabolism , Vanadium/isolation & purification
20.
Sci Rep ; 4: 4944, 2014 May 13.
Article in English | MEDLINE | ID: mdl-24821134

ABSTRACT

Elevated arsenic content in food crops pose a serious human health risk. Apart from rice wheat being another main food crop is possibly cultivated on contaminated sites. But for wheat uptake mechanisms are not entirely understood especially with regard to nutrient fertilization and different moisture regimes taking into account heavy rainfall events due to climate change. Here we show that especially higher P-fertilization under changing redox conditions may enhance arsenic uptake. This counteracts with higher N-fertilization reducing arsenic transfer and translocation into aboveground plant parts for both higher P-fertilization and reducing soil conditions. Arsenic speciation did not change in grain but for leaves P-fertilization together with reducing conditions increased the As(V) content compared to other arsenic species. Our results indicate important dependencies of nutrient fertilization, moisture conditions and substrate type on As accumulation of wheat as one of the most important crop plants worldwide with implications for agricultural practices.


Subject(s)
Arsenic/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Triticum/metabolism , Soil/chemistry , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...